

Tunneling-Enabled High-Efficiency High-Power Multi Junction LEDs

Sandia National Laboratories and Ohio State University Andrew Armstrong, Sandia National Laboratories aarmstr@sandia.gov

Andrew Armstrong aarmstr@sandia.gov

Project Summary

Timeline:

Start date: 10/1/2018

Planned end date: 9/30/2020

Key Milestones

- 1. Demonstrate TJ on MOCVD LED; 7/2019
- 2. Demonstrate 2x TJ-LED; 3/2020
- Demonstrate droop-free 3xMJ-LED; 9/2020
- 4. External validation of MJ-LED performance; 9/2020

Budget:

Total Project \$ to Date:

• DOE: \$250,000

Cost Share: \$0

Total Project \$:

DOE: \$1,000,000

Cost Share: \$0

Key Partners:

Sandia National Laboratories

Ohio State University

Lumileds

Project Outcome:

Demonstrate tunneling-enabled, multiple active region light emitting diodes (LEDs) that circumvent efficiency droop by operating at three times the input electrical power at the same wall plug efficiency as a conventional LED. For a tunnel junction resistivity < 1 mOhm.cm², multi-junction LED performance is equivalent to a conventional LED that maintains > 98% relative EQE at 100A/cm² vs 35 A/cm², which surpasses the 2025 target for current droop described in the DOE Solid-State Lighting 2017 R&D Plan.

Team

Sandia National Laboratories

Dr. Andrew Armstrong (PI)

- Team coordination
- Device design
- 12 yrs experience GaN LED characterization

Dr. Brendan Gunning

- MOCVD crystal growth
- 6 yrs experience GaN MBE crystal growth
- 3 yrs experience GaN MOCVD crystal growth

Dr. Mary Crawford

- Optical (PL) and opto-electronic (EL, EQE) LED characterization
- 19 yrs experience GaN LED design, fabrication, and characterization
- 3 yrs experience commercial MOCVD GaN LED crystal growth

Ohio State University

Prof. Siddharth Rajan (co-Pl)

- MBE GaN crystal growth
- Device design and fabrication
- 20 yrs experience GaN MBE crystal growth
- 6 yrs experience in III-nitride TJ and TJ LED growth and characterization
- Rajan group has ## publications on III-N TJ and TJ-LEDs

Prof. Jinwoo Hwang

- TEM characterization
- 8 yrs experience in GaN microscopy

Prof. Shamsul Arafin

- LED fabrication
- 11 yrs experience in III-V optoelectronics

Lumileds

Dr. Parijat Deb

Guidance on commercial compatibility

Andrew

- Armstrong and Rajan have 9 publications together over the last 4 year
- 7 of those publications involve AlGaN TJ LEDs

Challenge: Must improve GaN LED efficiency

Problem Definition:

- DOE 2030 goal of \$40B/yr consumer savings due to solid-state lighting (SSL) requires increasing SSL market penetration
- Critical path is reducing consumer payback period by increasing SSL efficiency
- GaN LED efficiency primarily determines SSL efficiency
- "Efficiency droop" problem limits GaN LED efficiency far below fundamental limit
- Must solve efficiency droop to increase SSL efficiency and maximize consumer savings

Approach: Avoid efficiency droop using tunnel junction LEDs

Piprek APL 104 05118 (2014).

- Tunnel junction LEDs (TJ-LEDs) replace p-GaN contact with n-GaN contact¹
- Electrons injected from the bottom n-type contact
- ➤ Electrons extracted by the top n-type contact → Holes injected by TJ

1. Jeon et. al., APL, 78,3266 (2001)

Approach: Avoid efficiency droop using tunnel junction LEDs

2x4 QW TJ-LED

Piprek APL 104 05118 (2014).

- Cascading multiple MQW regions with TJs can circumvent efficiency droop¹
- > TJ injects holes into MQW#1 and top contact injects holes into MQW#2
- > Twice the LED output power for the same input current

1. Akyol et al., APL 103 081107 (2013).

Approach: TJ LEDs multiply output power without reducing efficiency

WPE for cascaded TJ-LED

Akyol et al., APL 103 081107 (2013).

Higher operating voltage for cascade TJ-LED

Akyol et al., APL 103 081107 (2013).

- \triangleright Nx multi-junction LED (MJ-LED) increases optical output power by $\sim Nx$
- Current stays constant and therefore so does wall plug efficiency (WPE)
- Price is higher forward voltage, but increasing voltage does not reduce radiative efficiency

Approach: Minimize TJ voltage drop at low current

- ightharpoonup Require $\rho_{TJ} \le 2 \text{ m}\Omega.\text{cm}^2$ at 50 A/cm² for < 0.1 V excess voltage drop in 2x MJ-LED
- High doping concentration: reduce energy barrier and reduce tunneling distance
- ➤ Best TJs grown by molecular beam epitaxy (MBE), but best LEDs grown by metalorganic chemical vapor deposition (MOCVD)

Approach: Differentiation from competing approaches

MBE/MOCVD TJ laser

Most work focused on TJ lasers:

- Single MQW region
- Much higher current density
- ➤ TJ-LED is a circuit solution to efficiency droop → universally applicable solution
- Agnostic to physical cause of current droop because device operates at low current
- Most effort focused on fixing "site-specific" LED problems (leakage, transport, defects etc.)

Impact: Value proposition

Figure 2.10 U.S. Cumulative Energy Savings Forecast from 2015 to 2035

Source: DOE SSL Program, "Energy Savings Forecast of Solid-State Lighting in General Illumination Applications," September 2016 [1]

- ➤ MJ-LEDs have potential to achieve the DOE SSL goal of 96% relative EQE at effective current density of 100 A/cm² (3xMJ-LED at 33 A/cm²) vs. 35 A/cm² (standard LED)
- Accelerate progress toward DOE 2030 goal of \$40B/yr consumer savings
- Increasing LED market penetration will foster domestic lighting manufacturing by enabling custom lighting solutions that take place near the end user
- Increasing LED efficiency enables new economic sectors, such indoor farming

Progress: Execution against milestones

- First attempt at MBE/MOCVD TJ diode was successful
- \triangleright Achieved target ρ_{τ_l} for 2x MJ-LED
- Electroluminescence (EL) shows good current spreading

Progress: MBE/MOCVD TJ among better reported

MBE/MOCVD TJ pn-diode

Hybrid MBE/MOCVD TJ diode

First MBE/MOCVD TJ comparable to top reports for low current density

Progress: Execution against milestones

pn-diode + TJ (No QWs) n-type GaN:Si (5e18 cm⁻³) n+ GaN:Si (2e20 cm⁻³, 10 nm) p+ GaN:Mg (1/2/3e20 cm⁻³, 12nm) p-type GaN:Mg (3e19 cm⁻³) n-type GaN:Si (2e16 cm⁻³) n-type GaN:Si (3e18 cm⁻³) n-type GaN-on-sapphre

Electroluminescence and IV

- First MOCVD TJ diode was successful
- \triangleright Higher ρ_{TI} and less uniform EL compared to MBE/MOCVD hybrid TJ diode
- Likely due, in part, to insufficient Mg activation (equipment issue since solved)

Progress: all-MOCVD TJ among better reported

All-MOCVD regrown GaN TJ-LED

Electroluminescence and IV

First all-MOCVD TJ comparable to top reports for low current density

Stakeholder Engagement: Path to commercialization

Lumileds LLC | 370 West Trimble Road | San Jose, California 95131 USA | 408 964 2900 | lumileds.co

- Program is six months in to a 24 month project
- We are engaging directly with Lumileds, the leading SSL manufacturer for:
 - 1. Guidance on research directions with respect to manufacturability
 - 2. Independent confirmation of promising device results, as needed
 - 3. Consideration of technology development if MJ-LEDs meet the stated goals
- ➤ Both Sandia and Ohio State have large organizations dedicated to licensing technology and transitioning it to commercial partners

An

Remaining work: Improving TJ performance

MOCVD GaN morphology at high doping

$[Sil = 6 \times 10^{19} \text{ cm}^{-3}]$ (b) [Ge] = 6×10^{19} cm⁻³

InGaN interlayer for polarization doping

- Demonstrated working MBE/MOCVD and all-MOCVD TJ diodes
- Reduce MOCVD ρ_{TI} by replacing Si with Ge dopant for higher doping levels
- Insert InGaN polarization-doping layers to increase doping (if necessary)

Remaining work: Path to 2x and 3x MJ-LED

Integrate TJs into MJ-LED

Chang et al., IEEE JQE 51 3300505 (2015).

TEM of InGaN/GaN MQWs

- Currently developing all-MOCVD 4x MJ-LED to assess baseline performance
- Strain-induced defectivity and InGaN thermal decompositions key concerns
- Examining reduced MOCVD growth temperatures to increase thermal budget
- Monitor InGaN integrity using transmission electron microscopy (TEM)

Thank You

Performing Organization(s)
PI Name and Title
PI Tel and/or Email

Project Budget

Project Budget: \$1,000,000 over 2 years

Variances: None.

Cost to Date: 25%.

Additional Funding: None.

Budget History					
10/1 - FY 2019		FY 2019 (current)		9/30 FY 2020 - (planned)	
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share
\$1,000,000	0	\$500,000	0	\$500,000	0

Project Plan and Schedule

- 1. Demonstrate TJ on MOCVD LED; 7/2019
 - 1. TJ with resistivity $< 1 \text{ m}\Omega.\text{cm}2$
 - 2. Baseline 4x MJ-LED
 - 3. TJ-LED with EQE > 0.2 and WPE > 0.18 at Jabs = 35A/cm2
- 2. Demonstrate 2x TJ-LED; 3/2020
 - 1. 2xMJ-LED with EQE > 0.4 and WPE > 0.18 operating at Jeff = 70 A/cm2
- 3. Demonstrate droop-free 3xMJ-LED; 9/2020
 - 1. 3xMJ-LED with < 0.1 excess turn-on voltage
 - 2. 3xMJ-LED with EQE > 0.6 and WPE > 0.18 operating at Jeff = 100 A/cm2
- External validation of MJ-LED performance; 9/2020

References

Electroluminescence and IV

- Polarization doping with InGaN interlayer reduces rTJ
- Best results reported have high In content that is optically absorbing
- ➤ High In content also reduces thermal budget